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This paper presents the second- and higher-order spectral densities of stationary
(in space) random fields arising as approximations of rescaled solutions of the
heat and fractional heat equations with singular initial conditions. The devel-
opment is based on the diagram formalism and the Riesz composition formula.
Our results are the first step to full parametrization of higher-order spectra of
some classes of fractional random fields.
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1. INTRODUCTION

Partial differential equations (PDE) such as the heat or fractional heat
equation have been used to represent many natural processes (see Schneider
and Wyss, (37) Kochubei, (26) Mainardi, (28) Podlubny, (32) Mainardi and
Gorenflo, (29) Mainardi et al. (30)). On the other hand, it is well documented
that non-Gaussian random fields with long-range dependence (LRD) have
been useful in describing data arising in many areas such as turbulence,
finance, porous media and anomalous diffusion (see Barndorff-Nielsen and
Shephard, (9) Hilfer, (21) Metzler and Klafter (31) and the references therein).
Those random fields, which are solutions of PDEs with random initial



conditions to describe non-Gaussianity, LRD and/or intermittency, have
been a subject of extensive research in the current literature.

An introduction of rigorous probabilistic tools into the subject can
be traced back to Kampé de Feriet (25) and Rosenblatt (35) who considered
the heat equation with stationary initial conditions. Some mathematical
aspects of the random initial value problems for the heat or fractional heat
equation have been treated in Leonenko and Woyczynski, (27) Anh and
Leonenko. (3–6) In particular, they have presented the non-Gaussian scenarios
for the rescaled solutions of heat or fractional heat equations with strongly
dependent initial conditions (see also their references). These limiting dis-
tributions (non-Gaussian, in general) are described in terms of multiple
Wiener–Itô integrals. In a sense these results are analogous to the limit
theorems for non-linear transforms of Gaussian processes and fields with
LRD (see, for example, Taqqu, (41) Dobrushin and Major (17)), but the type
of non-Gaussian limiting fields is different. In particular, these fields are
stationary in space, while the random limiting processes and fields in
Taqqu (41) and Dobrushin and Major (17) are non-stationary.

This paper presents a continuation of the above works of Leonenko
and Woyczynski (27) and Anh and Leonenko. (3–6) We obtain the second- and
higher-order spectral densities of stationary (in space) fractional random
fields arising as approximations of rescaled solutions of the heat and frac-
tional heat equations with singular initial conditions. The concept of higher-
order spectra goes back to Brillinger, (11) Brillinger and Rosenblatt (13, 14) (see
also Subba Rao, (38) Subba Rao and Gabr, (39) Rosenblatt, (36) Brillinger (12)

and Priestly (33)). In these works, a non-parametric theory of estimation of
higher-order spectra was considered for weakly-dependent discrete-param-
eter random fields. In this paper, we attempt to get full parametrisation of
higher-order spectra of fractional random fields. This parametrisation is
needed for identification of the parameters of these non-Gaussian random
fields. In fact, the possible non-Gaussianity of a data set can be confirmed
by using the bispectrum, which is zero for a Gaussian field but is non-zero
for a non-Gaussian field (it should be noted that the usual second-order
spectrum is the same for both cases). This important topic of non-Gaussian
parameter identification, which requires some parametric forms of higher-
order spectral densities, will be addressed in a subsequent paper.

These non-Gaussian models, particularly the fractional heat equation
with different non-Gaussian random initial conditions outlined in Section 3
later, would be useful in modelling financial processes. In fact, these pro-
cesses are known to exhibit scaling and have heavy-tailed marginal distri-
butions (Barndorff-Nielsen and Prause, (8) Barndorff-Nielsen and Shephard, (9)

Boyarchenko and Levendorskii (10)). The fractional Riesz–Bessel operator
(extending the Laplacian) of the fractional heat equation (3.1) may be used
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to model the heavy tails via the Green function of this equation, while its
random initial conditions may be tailored to reflect the global scaling
behaviour of financial processes. Higher-order spectral densities will then
play an essential role in the analysis of financial data.

Higher-order moments and spectra also appear in multifractal analyses
of turbulence processes (Frisch (20)). Assuming that the corresponding mul-
tifractal formalism holds, the spectrum of singularities (i.e., the multifractal
spectrum) of these processes can then be estimated from the Lp-spectrum of
moments via the Legendre transform (Frisch, (20) Jaffard, (23) Riedi (34)). The
multifractal formalism was discussed for multiplicative cascade processes
and several other processes in Frisch. (20) A rigorous proof of this formalism
was established in Jaffard (24) for some specific classes of functions in
Sobolev and Besov spaces.

Higher-order spectral densities are also of interest in defining the long-
range dependence and intermittency of non-Gaussian random fields (see
Remarks 4–6 later). In fact, the singular behaviour of higher-order spectral
densities at the origin and on the diagonals can be used to define higher-
order LRD, and the corresponding result for the fractional heat equation
allows to express the bifractal nature of the data in a more complete way
than the corresponding second-order LRD and intermittency considered in
Anh and Heyde. (2)

This paper is organized as follows. Section 2 presents the results for
the random heat equation while Section 3 for the random fractional heat
equation. Section 4 contains the proofs of some of these results. Appendix A
contains the Riesz composition formula which plays a key role in our
development. The diagram formula for the cumulants of multiple stochas-
tic integrals and related definitions and notations are grouped together in
Appendix B.

2. THE RANDOM HEAT EQUATION

In this section we present the second-order and higher-order spectral
densities for the random fields arising as the limits of the rescaled solutions
of the random heat equation. We consider the classical heat equation

“u
“t

=m Du, m > 0 (2.1)

subject to the random initial conditions

u(0, x)=v(x), x ¥ Rn, (2.2)
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where D is the Laplacian and v(x) is a random field of the form
v(x)=h(t(x)). The Gaussian random field t(x), x ¥ Rn, and non-linear
function h(u), u ¥ Rn, are assumed to satisfy the conditions A, B, and C
given below.

A. The field t(x), x ¥ Rn is a real measurable mean-square continu-
ous homogeneous isotropic Gaussian random field with Et(x)=0 and
covariance function of the form

B(x)=(1+||x||2)−x/2, x ¥ Rn, 0 < x < n.

B. The real function h is such that Eh2(t(0)) < ..

The non-linear function h of condition B can be expanded in the series

h(u)= C
.

k=1

Ck

k!
Hk(u), Ck=F

R
1

h(u) Hk(u) j(u) du

of orthogonal Chebyshev–Hermite polynomials

Hk(u)=( − 1)k [j(u)]−1 dk

duk j(u), j(u)=
1

`2p
e−u2/2,

u ¥ R1, k=0, 1, 2,...

C. There exists an integer m \ 1 such that

C1= · · · =Cm − 1=0, Cm ] 0.

The integer m \ 1 is called the Hermitian rank of the function h (see,
for example, Taqqu (41)).

In Anh and Leonenko, (3) the limit distributions of the rescaled solu-
tions of the heat equation (2.1) with initial data (2.2) have been described
in terms of their multiple stochastic integral representation. We recall this
result in the following theorem.

Theorem 1. Let u(t, x), t > 0, x ¥ Rn, be a solution of the initial
value problem (2.1)–(2.2) with random initial condition of the form v(x)=
h(t(x)), where a Gausian random field t(x), x ¥ Rn, and a non-linear
function h(u), u ¥ R, satisfy the conditions A, B, C and x ¥ (0, n/m), where
m is the Hermitian rank of the function h. Then the finite-dimensional dis-
tributions of the random fields

Xe(t, x)=
1

exm/4
5u 1 t

e
,

x

`e
2− C0

6 , t > 0, x ¥ Rn
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converge weakly, as e 0 0, to the finite-dimensional distributions of the
random fields

Xm(t, x)=
Cm

m!
[c(n, x)]m/2 F

−

R
nm

e i(x, l1+ · · · +lm) − mt ||l1+ · · · +lm||2

(||l1 || · · · ||lm ||) (n − x)/2

× W(dl1) · · · W(dlm), t > 0, x ¥ Rn, 0 < x < n/m, m \ 1,
(2.3)

where the Tauberian constant

c(n, x)=C 1n − x

2
2;[2xpn/2C(x/2)], (2.4)

and W( · ) is the Gaussian complex white noise measure.

Remark 1. The symbol > − means a multiple stochastic integral with
respect to the Gaussian complex white noise measure with the hyperplanes
li=± lj, i, j=1,..., m, i ] j, being excluded from the domain of integration.

Remark 2. For m \ 1 and x ¥ (0, n/m) the random fields Xm(t, x),
t > 0, x ¥ Rn, is stationary in x with EXm(t, x)=0 and covariance function

EXm(t, x) Xm(t −, y)=R(x − y, t+t −).

Observe that the field X1(t, x), t > 0, x ¥ Rn, is Gaussian and stationary
in x, with zero mean and spectral density

S1, 2(l)=C2
1c(n, x)

e−m(t+tŒ) ||l||2

||l||n − x
, l ¥ Rn (2.5)

such that

EX1(t, x) X1(t −, y)=F
R

n
e i(l, x − y)S1, 2(l) dl.

This random field has LRD of the second order, i.e., the spectral density
satisfies S1, 2(0)=..

The random fields Xm(t, x), t > 0, x ¥ Rn, with m \ 2 are non-Gaus-
sian with EX2

m(t, x) < .. The following theorem describes the second-
order spectral density of the non-Gaussian random fields (2.3).
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Theorem 2. The random field Xm(t, x), t > 0, x ¥ Rn, with fixed
t > 0 and m \ 2 is stationary in x, that is,

EXm(t, x) Xm(t, x −)=F
R

n
e i(l, x − xŒ)Sm, 2(l) dl,

with spectral density

Sm, 2(l)=
Cm

m!

2

(c2(n, x))m K(x, m)
e−2mt ||l||2

||l||n − mx
, l ¥ Rn, 0 < x < n/m,

(2.6)

where

K(x, m)=p
n
2

(m − 1) 3 C(x

2 )
C( n − x

2 )
4m − 1

D
m − 1

i=1

C( ix
2 ) C( n − (1+i) x

2 )

C( n − ix
2 ) C( (1+i) x

2 )
. (2.7)

The proof of Theorem 2 will be presented in Section 4.

Remark 3. The non-Gaussian random fields Xm(t, x), t > 0, x ¥ Rn,
with m \ 2 display LRD in space (see (2.6)), that is, Sm, 2(0)=.. The rate
of convergence to infinity of the spectral density Sm, 2(l) as |l| Q 0 becomes
faster and faster when m \ 2 increases.

We next describe the bispectra and higher-order spectral densities of
the non-Gaussian random fields Xm(t, x), t > 0, x ¥ Rn, with m \ 2. Note
that the bispectra and all higher-order spectral densities of the Gaussian
random field X1(t, x) are equal to zero. Let us first recall the definition of
higher-order spectral densities of real-valued strictly stationary (up to the
order k \ 2) continuous-parameter random field Z(x), x ¥ Rn, with E |Z(x)|k

< ., k \ 2. Let

ck(x1,..., xk)=
1
ik

“
k

“u1 · · · “uk
log E exp 3 i C

k

j=1
ujZ(xj)4:

u1= · · · =uk=0

be the cumulant function of a random vector (Z(x1),..., Z(xk)), k \ 2.
Then, for strictly stationary fields,

ck(x1,..., xk)=ck(x1 − xk,..., xk − 1 − xk, 0),

and if there exists a complex-valued integrable function

Sk(l1,..., lk − 1) ¥ L1(R (k − 1) n)
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such that

ck(x1 − xk,..., xk − 1 − xk, 0)

=F
R

(k − 1) n
exp 3 i C

k − 1

j=1
Olj, xj − xkP4 Sk(l1,..., lk − 1) dl1 · · · dlk − 1,

then Sk(l1,..., lk − 1) is called the spectral density of order k \ 2 of the field
Z(x), x ¥ Rn, (see Ivanov and Leonenko (22) for details).

We should note that Sk(l1,..., lk − 1)=Sk(l1,..., lk − 1, lk) with lk=
−(l1+ · · · +lk − 1). For such a function we will use the following symme-
trized version:

sym
{l1,..., lk : l1+ · · · +lk − 1+lk=0}

Sk(l1,..., lk − 1)=
1
k!

C
p ¥ Pk

Sk(lp(1),..., lp(k − 1))

where Pk is the set of all k! permutations p=(p(1),..., p(k)) of the set
{1,..., k}. All our spectral densities of higher-order will be absolutely
summable. This will be discussed later in Remark 7.

We are now in a position to formulate our second result which
describes the bispectra of the non-Gaussian random fields Xm(t, x), t > 0,
x ¥ Rn, with m \ 2.

Theorem 3. The random field Xm(t, x), t > 0, x ¥ Rn, with fixed
t > 0 and m \ 2 is strictly stationary in x of the third order with
E |Xm(t, x)|3 < .. Its bispectra Sm, 3(l1, l2) exist and can be expressed as

Sm, 3(l1, l2)=1C2k

k!
23

(c(n, x))3k (K(n, x))3

× sym
{l1, l2, l3 : l1+l2+l3=0}

[exp{ − mt(||l1 ||2+||l2 ||2+||l1+l2 ||2)}

× gm, 3(l1, l2)], (2.8)

gm, 3(l1, l2)=F
R

n

dz
(||l1+l2+z|| ||l2+z|| ||z||)n − kx

, 0 < x < n/m, l1, l2 ¥ Rn,
(2.9)

when m=2k, k=1, 2,... and

Sm, 3(l1, l2)=0,
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when m=2k+1, k=1, 2,... . The function gm, 3(l1, l2), m=2k, is homo-
geneous of order H=3

2 mx − 2n, that is, gm, 3(tl1, tl2)=tHgm, 3(l1, l2), and
its Fourier transform is given by

ĝm, 3(z1, z2)=1p
n
2

− kx C(kx/2)
C((n − kx)/2)

23

(||z1 || ||z2 || ||z1 − z2 ||)−kx. (2.10)

The proof of Theorem 3 will be given in Section 4.

Remark 4. By Riesz’s composition formula (see Appendix A) we
obtain that for x ¥ (0, n/m)

gm, 3(l1, 0)=k 1mx − n,
mx

2
2 ||l1 ||

3
2

mx − 2n,

gm, 3(0, l2)=k 1mx − n,
mx

2
2 ||l2 ||

3
2

mx − 2n,

gm, 3(l, −l)=k 1mx − n,
mx

2
2 ||l||

3
2

mx − 2n,

where

k(a, b)=pn/2
C( a

2 ) C(b

2 ) C( n − a − b

2 )

C( n − a
2 ) C( n − b

2 ) C( a+b

2 )

(see Appendix A for the nature of this constant). These formulae express
the singular properties of the function gm, 3(l1, l2), hence of Sm, 3(l1, l2)
(see (2.8)), on the hyperplanes l2=0, l1=0, and l1+l2=0.

The corresponding trispectra are more complicated. We are able to
obtain

Theorem 4. The random field Xm(t, x), t > 0, x ¥ Rn, with fixed
t > 0 and m \ 2 is strictly stationary in x of the fourth order with
E |Xm(t, x)|4 < . and its trispectra Sm, 4(l1, l2, l3) can be expressed as

Sm, 4(l1, l2, l3)=1Cm

m!
cm/2(n, x)2

4

C
[m/2]

k=1

(m!)4

((m − 2k)!)2 3k sym
{l1, l2, l3, l4 : ; 4

i=1 l i=0}

×5exp 3− mt 1 C
3

i=1
||l i ||2+> C

3

i=1
l i
>224

× (Ik, 1(l1, l2, l3)+Ik, 2(l1, l2, l3)+Ik, 3(l1, l2, l3))6
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where

Ik, 1(l1, l2, l3)={K(x, k)}4 {K(x, m − 2k)}2 {k(kx, (m − 2k) x)}2

× F
R

n
||l1+l2+m||kx − n ||l1+m|| (m − k) x − n

× ||l1+l2+l3+m|| (m − k) x − n ||m||kx − n dm, (2.11)

Ik, 2(l1, l2, l3)={K(x, k)}4 {K(x, m − 2k)}2 {k(kx, (m − 2k) x)}2

× F
R

n
||l1+m||kx − n ||l1+l2+l3+m||kx − n

× ||l1+l2+m|| (m − k) x − n ||m|| (m − k) x − n dm, (2.12)

Ik, 3(l1, l2, l3)={K(x, k)}4 {K(x, m − 2k)}2

× F
R

3n
||l1+m − n||kx − n ||l1+l2+m − n − l||kx − n

× ||l1+l2+l3+m − l||kx − n

× ||m||kx − n ||n|| (m − 2k) x − n ||l|| (m − 2k) x − n dm dn dl. (2.13)

Remark 5. By Riesz’s composition formula (see Appendix A), we
obtain that for x ¥ (0, n/m)

Ik, 1(0, 0, l3)=K1k((m+k) x − 2n, (m − k) x) ||l3 ||2mx − 2n,

Ik, 1(0, l2, 0)=K1k(mx − n, mx − n) ||l2 ||2mx − 2n,

Ik, 1(l1, 0, 0)=K1k((2m − k) x − 2n, kx) ||l1 ||2mx − 2n,

Ik, 1(l, −l, l)=K1k(2kx − n, 2(m − k) x − n) ||l||2mx − 2n,

K1={K(x, k)}4 {K(x, m − 2k)}2 {k(kx, (m − 2k) x)}2

and analogously for Ik, 2:

Ik, 2(0, 0, l3)=K1k((2m − k) x − 2n, kx) ||l3 ||2mx − 2n,

Ik, 2(0, l2, 0)=K1k(mx − n, mx − n) ||l2 ||2mx − 2n,

Ik, 2(l1, 0, 0)=K1k((m+k) x − 2n, (m − k) x) ||l1 ||2mx − 2n,

Ik, 2(l, −l, l)=K1k(2kx − n, 2(m − k) x − n) ||l||2mx − 2n.
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These formulae describe the singular properties of the functions Ik, 1(l1, l2, l3)
and Ik, 2(l1, l2, l3) and so of Sm, 4(l1, l2, l3) on the hyperplanes

˛l1=0

l2=0
, ˛l1=0

l3=0
, ˛l2=0

l3=0
, ˛l1+l2=0

l2+l3=0
.

The spectral densities Sm, p(l1,..., lp − 1) of order p > 4 for the fields
Xm(t, x), t > 0, x ¥ Rn, are of a more complicated form. We first consider
the cases m=2 and m=3. The spectral densities of an arbitrary order p for
these cases are presented in the next two theorems.

Theorem 5. The random field X2(t, x), t > 0, x ¥ Rn, defined by the
representation (2.3) with m=2 and fixed t > 0, is strictly stationary in x of
order p with E |X2(t, x)|p < .. Its spectral densities of order p, S2, p(l1,..., lp−1),
can be represented in the form

S2, p(l1,..., lp − 1)=5C2

2
c(n, x)6

p

2p − 1(p − 1)!

× sym
{l1,..., lp :; p

i=1 l i=0}
[e−mt(; p − 1

i=1 ||l i ||
2+||; p − 1

i=1 l i ||
2)g2, p(l1,..., lp − 1)],

(2.14)

where

g2, p(l1,..., lp − 1)=F
R

n

dl

(||l|| ||l+l1 || · · · ||l+;p − 1
i=1 l i ||)n − x

. (2.15)

Remark 6. By Riesz’s composition formula (see Appendix A), we
obtain the second order spectral density in closed form:

S2, 2(l)=2k(x, x) ||l||2x − n 5C2

2
c(n, x)6

2

with singularity at l=0.
For p \ 3 we obtain

(1) g2, 3(l1, l2) is of the form const × ||l i ||3x − 2n on the hyperplanes
{l1=0}, {l2=0}, {l1=−l2};

(2) g2, 4(l1, l2, l3) is of the form const × ||l i ||4x − 3n on the hyperplanes
{lk=lj=0}, k ] j, k, j=1, 2, 3 and also on the hyperplanes {lk=lj

=−l i};
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(3) g2, 5(l1, l2, l3, l4) is of the form const × ||l l ||5x − 4n on the hyper-
planes {l i=lj=lk=0}, i ] j ] k ¥ {1, 2, 3, 4}; {l i=lj=0, lk=−l l},
{l i=0, lj=lk=−l l}, {l i=−lj=lk=−l l}, i ] j ] k ] l ¥ {1, 2, 3, 4}.

And analogously for p \ 6.

Theorem 6. The random field X3(t, x), t > 0, x ¥ Rn, defined by
the representation (2.3) with m=3 and fixed t > 0 is strictly stationary
in x of order p with E |X3(t, x)|p < .. Its spectral densities of order p,
S3, p(l1,..., lp − 1), can be represented in the form

S3, p(l1,..., lp − 1)=1C3

3!
(c(n, x))3/22p

(S1(l1,..., lp − 1)+S2(l1,..., lp − 1))
(2.16)

for p=2k, k=1, 2,... and

S3, p(l1,..., lp − 1)=0

for p=2k+1, k=1, 2,..., where

S1(l1,..., lp − 1)

=(2k − 1)! sym
{l1,..., lp : ; p

i=1 l i=0}

5e−mt(; 2k − 1
i=1 ||l i ||

2+||; 2k − 1
i=1 l i ||

2)

× C
c1 ¥ C c(1,..., 1)

F
R

n(k+1)
D

2k − 1

i=1

> C
i

j=1
lj+l − C

i

j=1
mj
>x − n

||l||x − n D
2k

j=1
||mj ||x − n

× D
(ki, kj) ¥ K(c1)

d(mki
+mkj

) dl dlm1 · · · dlmk
6 ;

S2(l1,..., lp − 1)

=(2k − 1)! sym
{l1,..., lp : ; p

i=1 l i=0}

5e−mt(; 2k − 1
i=1 ||l i ||

2+||; 2k − 1
i=1 l i ||

2)

× C
c2 ¥ C c(2, 1,..., 1, 2)

F
R

n(k+1)
D

2k − 1

i=1

> C
i

j=1
lj − m2k+1 − C

i

j=1
mj
>x − n

D
2k+2

j=1
||mj ||x − n

× D
(ki, kj) ¥ K(c2)

d(mki
+mkj

) dm1 · · · dmk+1
6 .

In the above formulae, the summation is taken over Cc(1,..., 1), the
set of all complete diagrams with 2k levels with one vertex in each level,
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and over Cc(2, 1,..., 1, 2), the set of all complete diagrams with 2k levels
with vertices (2, 1,..., 1, 2) and no edge between levels containing 2 vertices;
K(c) denotes the set of edges of the diagrams c (see Appendix B and the
proof of the theorem). In the general case, we can formulate the following
result.

Theorem 7. The random fields Xm(t, x), t > 0, x ¥ Rn, with t > 0
fixed, are strictly stationary in x of order p with E |Xm(t, x)|p < .. Their
spectral densities of order p, Sm, p(l1,..., lp − 1), can be represented in the
form

Sm, p(l1,..., lp − 1)=1Cm

m!
(c(n, x))m/22p

(S1(l1,..., lp − 1)+S2(l1,..., lp − 1)),
(2.17)

where

S1(l1,..., lp − 1)=(p − 1)! sym
{l1,..., lp : ; p

i=1 l i=0}

5e−mt(; p − 1
i=1 ||l i ||

2+||; p
i=1 l i ||

2)

× C
c1 ¥ C

c
p(m − 2,..., m − 2)

F
R

n(p(m − 2)/2+1)
D
p − 1

i=1

×> C
i

j=1
lj+lp − C

i

j=1
C

j(m − 2)

k=(j − 1)(m − 2)+1
mk
>x − n

× ||lp ||x − n D
p(m − 2)

k=1
||mk ||x − n D

(ki, kj) ¥ K(c1)
{d(mki

+mkj
) dmki

} dlp
6 ,

(2.18)

S2(l1,..., lp − 1)=(p − 1)! sym
{l1,..., lp : ; p

i=1 l i=0}

5e−mt(; p − 1
i=1 ||l i ||

2+||; p
i=1 l i ||

2)

× C
c2 ¥ C c

p(m − 1, m − 1, m − 2,..., m − 2)
F

R
n(p(m − 2)/2+1)

D
p − 1

i=1

×> C
i

j=1
lj − mp(m − 2)+1 − C

i

j=1
C

j(m − 2)

k=(j − 1)(m − 2)+1
mk
> x − n

× D
p(m − 2)+2

k=1
||mk ||x − n D

(ki, kj) ¥ K(c2)
(d(mki

+mkj
) dmki

)6 . (2.19)

In the above formulae, the summation is taken over Cc(m − 2,..., m − 2),
the set of all complete diagrams with p levels and (m − 2) vertices in each
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level, and over Cc
p(m − 1, m − 1, m − 2,..., m − 2), the set of all complete

diagrams with p levels, 2 levels of which have m − 1 vertices each and no
edge between them, and the rest p − 2 levels have m − 2 vertices in each level
(see Appendix B and the proof of the theorem).

Remark 7. From Young’s inequality we obtain that all the
cumulant functions of the above stationary processes with finite moments
are bounded. Thus the corresponding spectral densities are integrable.
Since they are also real and non-negative, these spectral densities are
L1-functions in corresponding Euclidean spaces.

3. THE RANDOM SPACE-TIME FRACTIONAL HEAT EQUATION

In this section, we present the second-order and higher-order spectral
densities for the random fields arising as the limits of the rescaled solutions
of the fractional kinetic/diffusion equation

“
bu

“tb
=−m(I − D)c/2 ( − D)a/2 u, m > 0 (3.1)

subject to the random initial conditions

u(0, x)=v(x), x ¥ Rn, (3.2)

where a > 0, b ¥ (0, 1], c \ 0 are fractional parameters, v(x) is a random
field of the form v(x)=h(t(x)), x ¥ Rn, the non-random function h( · ) and
the random field t(x), x ¥ Rn, satisfying the conditions A–C introduced
in the previous section. Here, D is the n-dimensional Laplace operator,
and the operators − (I − D)c/2, c \ 0, and ( − D)a/2, a > 0, are interpreted
as inverses of the Bessel and Riesz potentials respectively (see Anh and
Leonenko (5)). Both Bessel and Riesz potentials are considered to be defined
in a weak sense in the frequency domain in terms of fractional Sobolev spaces.

The time derivative of order b ¥ (0, 1] is defined as follows:

“
bu

“tb
=˛“u

“t
(t, x), if b=1,

(Db
t u)(t, x), if b ¥ (0, 1),

where

(Db
t u)(t, x)=

1
C(1 − b)

5 “

“t
F

t

0
(t − y)−b u(y, x) dy −

u(0, x)
tb

6 , 0 < t [ T,
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is the regularized fractional derivative or fractional derivative in the Caputo–
Djrbashian sense (see Anh and Leonenko (5) for some historical reference).

We will use the following entire function of order 1/b and type 1:

Eb(z)= C
.

j=0

z j

C(bj+1)
, z ¥ C1, b > 0.

This function is known as the Mittag–Leffler function (see Djrbashian (15)).
In particular, for real x \ 0, b > 0,

Eb( − x)= C
.

j=0

( − 1) j x j

C(bj+1)
(3.3)

is infinitely differentiable and completely monotonic if 0 < b < 1, that is,

( − 1)k dk

dxk Eb( − x) \ 0, x \ 0, 0 < b < 1, k=0, 1, 2,...

For real x \ 0 and b < 1,

Eb( − x)=
sin(pb)

pb
F

.

0

exp{ − (xt)1/b} dt
t2+2t cos(pb)+1

.

In particular, for x \ 0, E1( − x)=e−x. For the function Eb, the following
asymptotic expansion holds:

Eb( − x)=− C
N

k=1

( − 1)k x−k

C(1 − bk)
+O(|x|−N − 1) (3.4)

as x Q ., where b < 1 (see Djrbashian, (15) p. 5).
The limiting distributions of the rescaled solutions of the initial value

problem (3.1) and (3.2) have been investigated in Anh and Leonenko. (5)

Their main result is formulated in the following theorem.

Theorem 8. Let the random field u(t, x), 0 < t [ T, x ¥ Rn, be a
solution of the fractional diffusion equation (3.1) with the random initial
condition (3.2) and assume that the conditions A, B, C are satisfied.
Suppose that the Green function of the equation is in L1(Rn) and

x < min(2a, n)/m, (3.5)
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where the parameter x is defined in the condition A and m \ 1 is the
Hermitian rank of the function h. Then the finite-dimensional distributions
of the random field

Ue(t, x)=
1

emxb/(2a) u 1 t
e
,

x
eb/a

2 , 0 < t [ T, x ¥ Rn,

converge weakly as e Q 0 to the finite-dimensional distributions of the
random field

Um(t, x)=
Cm

m!
cm/2(n, x) F

−

R
nm

e i(x, l1+ · · · +lm)

(||l1 || · · · ||lm ||) (n − x)/2 Eb( − mtb ||l1+ · · · +lm ||a)

× W(dl1) · · · W(dlm), 0 < t [ T, x ¥ Rn, (3.6)

where Eb is the Mittag–Leffler function (3.3), W is the complex Gaussian
white noise measure and c(n, x) is a constant defined by (2.4). Here, > − is
the multiple Wiener–Itô integral with respect to a complex Gaussian white
noise measure W( · ) with the diagonal hyperplanes l i= ± lj, i, j=1,..., m,
i ] j, being excluded from the domain of integration.

Remark 8. For m \ 1 and x < min(2a, n)/m, the random field
Um(t, x) is stationary in x ¥ Rn with covariance function

EUm(t, x) Um(s, y)=
C2

m

m!
cm(n, x) F

−

R
nm

e i(x − y, l1+ · · · +lm)

(||l1 || · · · ||lm ||)n − x

× Eb( − mtb ||l1+ · · · +lm ||a)

× Eb( − msb ||l1+ · · · +lm ||a) dl1 · · · dlm. (3.7)

For x < min(2a, n)/m, we have EU2
m(t, x) < ..

Observe that U1(t, x), t > 0, x ¥ Rn, is a stationary (in x) Gaussian
random field with covariance function (3.7) with m=1 and spectral density

S1, 2(l)=C2
1c(n, x) E2

b( − mtb ||l||a) ||l||x − n, l ¥ Rn. (3.8)

The spectral density (3.8) behaves as

C2
1c(n, x) ||l||x − n, x ¥ (0, min(2a, n))

as ||l|| Q 0. Hence the Gaussian random field U1(t, x), t > 0, x ¥ Rn, which
can be considered as an approximation to the solution of the fractional
kinetic equation with random singular data, displays LRD.
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Note also that as ||l|| Q .

S1, 2(l)=
C2

1c(n, x)
mtb

1
||l||n+2a − x

+O 1 1
||l||n+2a − x+1

2

(see Anh and Leonenko (5)). The component 1/||l||n+2a − a indicates the
second-order intermittency of the random field (see Anh et al. (1)).

Remark 9. Theorem 8 reduces to Theorem 1 for n \ 1, b=1, c=0,
a=2.

The second-order and higher-order spectral densities for the non-
Gaussian random fields Um(t, x), t > 0, x ¥ Rn, with m \ 2 are given in the
next two theorems.

Theorem 9. Consider the random field Um(t, x), t > 0, x ¥ Rn, with
fixed t > 0 and m \ 2. This random field is stationary in x, that is,

EUm(t, x) Um(t, x −)=F
R

n
e i(l, x − xŒ)SUm, 2

(l) dl

with the following spectral density

SUm, 2(l)=
C2

m

m!
cm(n, x) K(x, m)(Eb( − mtb ||l||a))2 ||l||mx − n. (3.9)

Remark 10. The non-Gaussian random fields Um(t, x), t > 0, x ¥ Rn,
with m \ 2 display LRD in space. In fact, from (3.9) we have that their
spectral density behaves as

const × ||l||mx − n, x ¥ (0, min(2a, n))

as ||l|| Q 0.
From (3.4) we also conclude that

SUm, 2(l)=1Cm

m!
22 cm(n, x) × 2K(x, m)

mtb

1
||l||n+2a − mx

+O 1 1
||l||n+2a − mx+1

2 .

In the next theorem we describe higher-order spectra for the fields
Um(t, x), t > 0, x ¥ Rn.
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Theorem 10. The random fields Um(t, x), t > 0, x ¥ Rn, with t > 0
fixed are strictly stationary in x of order p with E |Um(t, x)|p < ., and their
spectral densities can be represented in the following forms:

(1) The bispectra

SUm, 3(l1, l2)=1C2k

k!
23

(c(n, x))3k (K(x, m))3 sym
{l1, l2, l3 : ; 3

i=1 l i=0}

×5Eb( − mtb ||l1 ||a) Eb( − mtb ||l2 ||a) Eb( − mtb ||l1+l2 ||a)

× F
R

n
(||l1+l2+l|| ||l2+l|| ||l||)kx − n dl6 for m=2k

and

SUm, 3(l1, l2)=0 for m=2k+1.

(2) The trispectra

SUm, 4(l1, l2, l3)=1Cm

m!
cm/2(n, x)2

4

C
[m/2]

k=1

(m!)4 3k+1

((m − 2k)!)2

× sym
{l1, l2, l3, l4 : ; 4

i=1 l i=0}

5D
3

i=1
Eb( − mtb ||l i ||a)

× Eb
1− mtb > C

3

i=1
l i
>a2{Ik, 1+Ik, 2+Ik, 3}6 ,

where Ik, 1, Ik, 2, Ik, 3 are given by formulae (2.11)–(2.13).

(3) The spectral densities of order p can be written in the form

SUm, p(l1,..., lp − 1)=1Cm

m!
(c(n, x))m/22p

(S (1)
Um

(l1,..., lp − 1)+S(2)
Um

(l1,..., lp − 1)),

where

S (1)
Um

(l1,..., lp − 1)=(p − 1)! sym
{l1,..., lp : ; p

i=1 l i=0}

5D
p − 1

i=1
Eb( − mtb ||l i ||a)

× Eb
1 − mtb > C

p − 1

i=1
l i
>a2 ;1(l1,..., lp − 1)6

Higher-Order Spectral Densities of Fractional Random Fields 805



and

S (2)
Um

(l1,..., lp − 1)=(p − 1)! sym
{l1,..., lp : ; p

i=1 l i=0}

5D
p − 1

i=1
Eb( − mtb ||l i ||a)

× Eb
1 − mtb > C

p − 1

i=1
l i
>a2 ;2(l1,..., lp − 1)6 .

Here, ;1(l1,..., lp − 1) and ;2(l1,..., lp − 1) are equal to the sums appearing
on the right-hand side of the formulae (2.18) and (2.19) respectively.

Remark 11. The structure of the set of singularities of the higher-
order spectral densities described in Theorems 9 and 10 are similar to
that of the set of singularities of the spectral densities from Section 2
because they are defined via the same integrals (see Remarks 2–6).
However, the behaviour of the spectral densities in Theorems 9 and 10 at
infinity is quite different from that of the spectral densities of Section 2:
Here, they have power-type behaviour which indicates higher-order
intermittency.

4. PROOFS

We provide in this section the proofs for Theorems 2 and 3 to illus-
trate the techniques, particularly the use of the Riesz composition formula
and the diagram formula for evaluating the products of multiple stochastic
Wiener–Itô integrals. These formulae are given in Appendices A and B
below. The proofs of the remaining theorems, although more involved, can
be constructed in a similar fashion. Complete details of these proofs are
provided in Anh et al. (7)

Proof of Theorem 2. Consider

Cov(Xm(t, x), Xm(t, x+y))

=
C2

m

m!
(c(n, x))m F

R
nm

e i(y, l1+ · · · +lm) − 2mt ||l1+ · · · +lm||2

(||l1 || · · · ||lm ||)n − x
dl1 · · · dlm

The change of variables l1=l −

1 − l −

2, l2=l −

2 − l −

3,..., lm − 1=l −

m − 1 − l −

m,
lm=l −

m yields ;m
i=1 l i=l −

1 and
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F
R

nm
e i(y, l1+ · · · +lm) e−2mt ||l1+ · · · +lm||2

(||l1 || · · · ||lm ||)n − x
dl1 · · · dlm

=F
R

nm
e i(y, l1) e−2mt ||l1||2

(||l1 − l2 || · · · ||lm − 1 − lm || ||lm ||)n − x
dl1 · · · dlm

=F
R

nm
e i(y, l) 1e−2mt ||l||2

F
R

(m − 1) n

dl2 · · · dlm

(||l − l2 || ||l2 − l3 || · · · ||lm − 1 − lm || ||lm ||)n − x
2 dl.

It follows that the spectral density of Xm(t, x) is given by

Sm, 2(l)=e−2mt ||l||2
F

R
(m − 1) n

dl2 · · · dlm

(||l − l2 || ||l2 − l3 || · · · ||lm − 1 − lm || ||lm ||)n − x

×
C2

m

m!
(c(n, x))m.

Let us denote f(x)=1/||x||n − x, fgm(x)=>R
(m − 1) n f(x − l2) f(l2 − l3) · · ·

f(lm − 1 − lm) f(lm) dl2 · · · dlm; then we can rewrite the expression for Sm, 2

in the form

Sm, 2(l)=e−2mt ||l||fgm(l)
C2

m

m!2 (c(n, x))m.

The convolution fgm(l) can be written out in a closed form if we apply the
Riesz composition formula (see Appendix A). In fact,

fgm(l)=F
R

(m − 1) n
f(l − l2) f(l2 − l3) · · · f(lm − 1 − lm) f(lm) dl2 · · · dlm

=F
R

(m − 1) n

dl2 · · · dlm

(||l − l2 || ||l2 − l3 || · · · ||lm − 1 − lm || ||lm ||)n − x
, 0 < mx < n.

From the Riesz formula,

F
R

n

dlm

(||lm − 1 − lm || ||lm ||)n − x
=k(x, x) ||lm − 1 ||2x − n.
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Hence we can write

fgm(l)=F
R

n
||l − l2 ||x − n F

R
n

||l2 − l3 ||x − n

× F
R

n
||lm − 1 − lm ||x − n ||lm ||x − n dlm dlm − 1 · · · dl2

=k(x, x) k(x, 2x) · · · k(x, (m − 2) x) k(x, (m − 1) x) ||l||mx − n

=K(x, m) ||l||mx − n,

where

K(x, m)=p
n
2

(m − 1) 3 C(x

2 )

C( n − x

2 )
4m − 1

D
m − 1

i=1

C( ix
2 ) C( n − (1+i) x

2 )

C( n − ix
2 ) C( (1+i) x

2 )
.

So we have

fgm(l)=K(x, m) ||l||mx − n

and

Sm, 2(l)=e−2m ||l|| ||l||mx − n K(x, m)
C2

m

m!
(c(n, x))m. L

Proof of Theorem 3. To calculate the bispectrum, we consider the
cumulant

Cum(Xm(t, x1), Xm(t, x2), Xm(t, x3))=c3 C
c ¥ C c

3, m

hc,

c3=1Cm

m!
(c(n, x))m/223

,

(4.1)

Cc
3, m being the set of complete closed diagrams with 3 levels {n1, n2, n3}=

{m, m, m}, with Cc
3, m=” if m=2k+1. So the cumulant is equal to zero if

m is odd.
Let us now consider the case m=2k. Denote

hx(l1,..., lm)=
e i(x, l1+ · · · +lm) − mt ||l1+ · · · +lm||2

(||l1 || · · · ||lm ||) (n − x)/2 (4.2)
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and for a diagram c ¥ Cc
3, m, m=2k, let K(c)={(ki, kj)} be the set of

edges; then hc can be written in the form

hc=F
R

n3k
hx1

(l1,..., l2k) hx2
(l2k+1,..., l4k) hx3

(l4k+1,..., l6k)

× D
(ki, kj) ¥ K(c)

d(lki
+lkj

) D
3k

i=1
dlki

.

The restriction that the diagrams c ¥ Cc
3, m be complete and closed leads to

the following construction of the diagrams: for each level of the diagram,
say, the first, one half of its vertices are connected to the second level and
the rest of the vertices are connected to the third level. Note also that
|Cc

3, m |=((2k)!/k!)3. It follows that

hc=F
R

n3k
hx1

(l1+ · · · +lk − lk+1 − · · · − l2k)

× hx2
(lk+1+ · · · +l2k − l2k+1 − · · · − l3k)

× hx3
( − l1 − · · · − lk+l2k+1+ · · · +l3k) dl1 · · · dl3k

=F
R

n3k
e i[(x1, ; k

i=1 l i − ; 2k
i=k+1 l i)+(x2, ; 2k

i=k+1 l i − ; 3k
i=2k+1 l i)+(x3, −; k

i=1 l i+; 3k
i=2k+1 l i)]

× e−mt[||; k
i=1 l i − ; 2k

i=k+1 l i ||
2+||; 2k

i=k+1 l i − ; 3k
i=2k+1 l i ||

2+|| − ; k
i=1 l i+; 3k

i=2k+1 l i ||
2]

×
dl1 · · · dl3k

(||l1 || · · · ||l3k ||)n − x
.

With the change of variables:

;k
i=1 l i − ;2k

i=k+1 l i=w1

;2k
i=k+1 l i − ;3k

i=2k+1 l i=w2

;3k
i=2k+1 l i=l −

3k

;p
i=1 l i=l −

p, p=1, 2,..., k − 1

;p
i=k+1 l i=l −

p, p=k+1, k+2,..., 2k − 1

;p
i=2k+1 l i=l −

p, p=2k+1, 2k+2,..., 3k − 1,

(4.3)
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that is,

l i=l −

i, i=1, k+1, 2k+1

lk=w1+w2+l −

3k − l −

k − 1

l2k=w2+l −

3k − l −

2k − 1

and for the remaining variables l i=l −

i+1 − l −

i, i ¨ {1, k+1, 2k+1, k, 2k},
the integral is transformed into the following

F
R

n · 2
e i(x1 − x3, w1)+i(x2 − x3, w2)e−mt(||w1||2+||w2||2+||w1+w2||2)

× F
R

n
5F

R
n(k − 1)

f(l1) D
k − 1

i=2
f(l i − l i − 1) f(w1+w2+l3k − lk − 1) dl1 · · · dlk − 1

× F
R

n(k − 1)
f(lk+1) D

2k − 1

i=k+2
f(l i − l i − 1) f(w1+l3k − l2k − 1) dlk+1 · · · dl2k − 1

× F
R

n(k − 1)
f(l2k+1) D

3k − 1

i=2k+2
f(l i − l i − 1) f(l3k − l3k − 1) dl2k+1 · · · dl3k − 1

6

× dl3k dw1 dw2

=F
R

n · 2
e i[(x1 − x3, w1)+(x2 − x3, w2)]e−mt(||w1||2+||w2||2+||w1+w2||2)

× F
R

n
fgk(w1+w2+l3k) fgk(w2+l3k) fgk(l3k) dl3k dw1 dw2.

The number of terms in the sum on the right-hand side of (4.1) is
((2k)!/k!)3, hence we arrive at the following expression for the bispectrum
of the process Xm(t, x) :

Sm, 3(w1, w2)=c3
1 (2k)!

k!
23

sym
{w1, w2, w3 : ; 3

i=1 w i=0}
[e−mt(||w1||2+||w2||2+||w1+w2||2)]

× F
R

n
fgk(w1+w2+l) fgk(w2+l) fgk(l) dl, for m=2k,
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where

F
R

n
fgk(w1+w2+l) fgk(w2+l) fgk(l)

={K(x, k)}3 F
R

n
(||w1+w2+l|| ||w2+l|| ||l||)kx − n dl

and the constant c3(2k!/k!)3=(C2k/k!)3 (c(n, x))3k. For m=2k+1,
Sm, 3=0. L

APPENDIX A. RIESZ’S COMPOSITION FORMULA

The following statement is known as Riesz’s composition formula:
Suppose that 0 < a < n, 0 < b < n, 0 < a+b < n, then

F
R

n
||x − z||a − n ||x − y||b − n dz=k(a, b) ||x − y||a+b − n,

where

k(a, b)=pn/2
C( a

2 ) C(b

2 ) C( n − a − b

2 )

C( n − a

2 ) C( n − b

2 ) C( a+b

2 )
(A.1)

(see du Plessis, (18) p. 71).

APPENDIX B. CUMULANTS OF MULTIPLE STOCHASTIC

INTEGRALS

This Appendix is based on Dobrushin,(16) Taqqu, (40) Fox and Taqqu, (19)

and Terdik. (42)

One of the basic tools for evaluating products of multiple stochastic
Wiener–Itô integrals and their moments is the diagram formula. It origina-
tes from the diagram formula for the products of Hermite polynomials of
Gaussian random variables. We prepare here the formula for evaluating
the cumulants of multiple stochastic integrals which is a consequence of the
diagram formula.

We first introduce some notations and definitions.
Let m1,..., mp be given positive integers. An undirected graph C with

m1+ · · · +mp=M vertices is called a diagram of order (m1,..., mp) if
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(a) the set of vertices V of the graph C is of the form

V={(1, 1),..., (1, m1), (2, 1),..., (2, m2),..., (p, 1),..., (p, mp)}=0
p

j=1
Wj,
(B.1)

where

Wj={(j, l): 1 [ l [ nj}

is the jth level of the graph C, 1 [ j [ p;

(b) each vertex is at most of degree 1, that is, met by at most one
edge;

(c) if vertices (j1, i1) and (j2, i2) are joined by an edge w=((j1, i1),
(j2, i2)), then j1 ] j2, that is, the edges of the graph C can connnect only
different levels.

Let C(m1,..., mp) denote the set of diagrams of order (m1,..., mp).
Denote by K(c)the set of edges of a diagram c ¥ C(m1,..., mp). With each
element v ¥ V, we can associate the integer denoting the position at which v
appears at the list (B.1). Thus the position of (1, 1) is 1, the positions of
(1, 2) is 2 and so on. The position of the last vertex (p, mp) is M. Each
edge w=((j1, i1), (j2, i2)) ¥ K(c) can also be thought of as w=(k1, k2),
where k1 is the position of the vertex (j1, i1) and k2 is the position of the
vertex (j2, i2) in the list (B.1). A diagram c is called complete if each of its
vertices is met by an edge, that is, there exists no isolated vertices. In such a
case, the number of edges in c is |K(c)|=M/2. A diagram is called closed
if the set of its levels {Wj, j=1,..., p} cannot be split into two subsets con-
nected by no edge.

Let h i ¥ L2(Rnmi), i=1,..., p, and define

h(l1,..., lM)=D
p

i=1
h i(lMi − 1+1,..., lMi

),

where Mi=m1+ · · · +mi, i=1, 2,..., p, M0=0, and Mp=M. The follow-
ing formula is used extensively in this paper:

Cum 1F
−

R
nm1

h1(l1,..., lm1
) D

m1

i=1
W(dl i),..., F

−

R
nmp

hp(l1,..., lmp
) D

mp

i=1
W(dl i)2

= C
c ¥ C c(m1,..., mp)

F
R

nM/2
h(l1,..., lM) D

(ki, kj) ¥ K(c)
{d(lki

+lkj
) dlki

}, (B.2)
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where the sum is over all complete closed diagrams c of order (m1,..., mp),
K(c) is the set of edges of the diagrams c, and d( · ) is the Kronecker delta
function.
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